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Abstract
In this paper, we discuss the Lie symmetries, symmetry algebra and symmetry
reductions of the equation which describes constant mean curvature surfaces
via the generalized Weierstrass–Enneper formulae. First we point out that
the equation admits an infinite-dimensional symmetry Lie algebra. Then
using symmetry reductions, we obtain two integrable Hamiltonian systems
(one autonomous, the other nonautonomous) with two degrees of freedom.
The autonomous one was obtained by Konopelchenko and Taimanov by other
means. Our method provides a new approach for construction of constant mean
curvature surfaces.

PACS numbers: 0220, 0210, 4520J, 0240, 1130

1. Introduction

For a long time, the only known examples of constant mean curvature surfaces in three-
dimensional Euclidean space E3 were, besides the round sphere and the cylinder, a family of
rotationally invariant surfaces discovered in 1841 by Delaunay [1]. But in the past two decades,
there have been several breakthroughs in the study of constant mean curvature surfaces. On
the one hand, in 1984 Wente [2] constructed infinitely many immersed tori of constant mean
curvature and disproved the so-called Hopf conjecture. In 1987 Kapouleas [3] constructed
closed constant mean curvature surfaces of any genus g � 3. On the other hand, in 1979
Kenmotsu [4] discovered a remarkable representation formula for arbitrary surfaces in E3 with
nonvanishing mean curvature, which is a generalization of the well known Weierstrass–Enneper
formula of minimal surfaces. In 1993 Konopelchenko [5] rediscovered it in a different but
equivalent form in connection with integrable nonlinear equations. By using this generalized
Weierstrass–Enneper formula, [6] established a relationship between constant mean curvature
surfaces and an integrable Hamiltonian system with two degrees of freedom. In this paper, we
discuss the Lie symmetries, symmetry algebra and symmetry reductions of the equation which
describes constant mean curvature surfaces via the generalized Weierstrass–Enneper formula.
We use the notation and formulae from [6].
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Let z, z̄ be local coordinates on a surface and (X1, X2, X3) coordinates of its immersion
in E3, where

X1 + iX2 = 2i
∫ z

z0

(ψ̄2
1 dz′ − ψ̄2

2 dz̄′)

X1 − iX2 = 2i
∫ z

z0

(ψ2
2 dz′ − ψ2

1 dz̄′)

X3 = −2
∫ z

z0

(ψ2ψ̄1 dz′ + ψ1ψ̄2 dz̄′)

(1)

and ψ1, ψ2 satisfy the equation

ψ1t − iψ1x = 2H(|ψ1|2 + |ψ2|2)ψ2

ψ2t + iψ2x = −2H(|ψ1|2 + |ψ2|2)ψ1
(2)

where H = constant, z = t + ix.
Then (1) describes a surface with constant mean curvature H . In the following sections,

we first point out that equation (2) admits an infinite-dimensional symmetry Lie algebra. Then
using symmetry reductions we obtain two integrable Hamiltonian systems (one autonomous,
the other nonautonomous) with two degrees of freedom. The autonomous one was obtained
in [6] by other means.

2. An infinite-dimensional symmetry Lie algebra

Without loss of generality, we may assume H = 1
2 , then (2) becomes

ψ1t = iψ1x + (|ψ1|2 + |ψ2|2)ψ2 ≡ K1

ψ2t = −iψ2x − (|ψ1|2 + |ψ2|2)ψ1 ≡ K2.
(3)

The Gateaux derivatives of Ki with respect to ψj are, respectively,

K ′
1ψ1

= i∂x + ψ̄1ψ2 + ψ1ψ2h̄

K ′
1ψ2

= |ψ1|2 + 2|ψ2|2 + ψ2
2 h̄

K ′
2ψ1

= −|ψ2|2 − 2|ψ1|2 − ψ2
1 h̄

K ′
2ψ2

= −i∂x − ψ1ψ̄2 − ψ1ψ2h̄

(4)

where operators ∂x and h̄ are defined, respectively, by

∂x(f ) = ∂f

∂x
h̄(f ) = f̄

for an arbitrary complex-valued function f , the bar denotes the complex conjugation.(
σ1

σ2

)
is called a symmetry of equation (3) if it satisfies(

σ1

σ2

)
t

=
(
K ′

1ψ1
K ′

1ψ2

K ′
2ψ1

K ′
2ψ2

) (
σ1

σ2

)
(5)

where σit denote the total derivatives of σi with respect to t , K ′
iψj

the Gateaux derivatives of
Ki with respect to ψj , and ψj satisfy equation (3).

From (5), through an arduous calculation, we have the following theorem.

Theorem 1. Let

σ1 = a(x, t)ψ1x + b(x, t)ψ1t + c(x, t)ψ1

σ2 = a(x, t)ψ2x + b(x, t)ψ2t + d(x, t)ψ2
(6)
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where a(x, t), b(x, t) are real-valued functions, c(x, t), d(x, t) are complex-valued functions,
and satisfy the following conditions:

at = −bx ax = bt bt − ibx = c̄ + d

ct = icx dt = −idx c + c̄ = d + d̄
(7)

then
(
σ1

σ2

)
is a symmetry of equation (3).

Examples. (
ψ1x

ψ2x

) (
ψ1t

ψ2t

) (
iψ1

iψ2

)

are all symmetries of equation (3) and so is(
tψ1x − xψ1t − 1

2 iψ1

tψ2x − xψ2t + 1
2 iψ2

)
.

Suppose
(
σ1j

σ2j

)
(j = 1, 2) are two symmetries of equation (3), where

σ1j = ajψ1x + bjψ1t + cjψ1

σ2j = ajψ2x + bjψ2t + djψ2
(8)

and
ajt = −bjx ajx = bjt bjt − ibjx = c̄j + dj

cjt = icjx djt = −idjx cj + c̄j = dj + d̄j .
(9)

Defining the Lie bracket of
(
σ11

σ21

)
and

(
σ12

σ22

)
as follows:[(

σ11

σ21

)
,

(
σ12

σ22

)]
=

(
σ11

σ21

)′(
σ12

σ22

)
−

(
σ12

σ22

)′(
σ11

σ21

)
(10)

where (
σ1j

σ2j

)′
=

(
aj∂x + bj∂t + cj 0

0 aj∂x + bj∂t + dj

)

then we have:

Theorem 2. The symmetries of equation (3) in theorem 1 together with the Lie bracket (10)
constitute an infinite-dimensional Lie algebra over real domain.

Proof. It is obvious that the real coefficients linear combinations of two symmetries of
equation (3) are also symmetries of (3).

If (8) are two symmetries of equation (3), then we have[(
σ11

σ21

)
,

(
σ12

σ22

)]
=

(
aψ1x + bψ1t + cψ1

aψ2x + bψ2t + dψ2

)

where

a(x, t) = a1a2x − a2a1x + b1a2t − b2a1t

b(x, t) = a1b2x − a2b1x + b1b2t − b2b1t

c(x, t) = a1c2x − a2a1x + b1c2t − b2c1t

d(x, t) = a1d2x − a2d1x + b1d2t − b2d1t.

Therefore

at = −bx ax = bt bt − ibx = c̄ + d

ct = icx dt = −idx c + c̄ = d + d̄.

From theorem 1, [
(
σ11

σ21

)
,
(
σ12

σ22

)
] is also a symmetry of (3).

Therefore from proposition 1 of [7, p 210], theorem 2 is proved. �
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3. Symmetry reductions and integrable Hamiltonian systems

In this section, using symmetry reductions, we give two integrable Hamiltonian systems with
two degrees of freedom. One is autonomous, which was obtained in [6] by other means. The
other is nonautonomous. In a special case, we give explicit solutions in terms of an elliptic
function.

First (
σ1 = ψ1x − iλψ1

σ2 = ψ2x − iλψ2

)
(11)

is a symmetry of equation (3), where λ is an arbitrary real number.
Let

σ1 = σ2 = 0.

We have

ψ1 = φ1(t)e
iλx ψ2 = φ2(t)e

iλx (12)

where φ1(t) and φ2(t) are arbitrary functions of t .
Then from (3), φ1(t) and φ2(t) satisfy the following equation:

φ1t = −λφ1 + (|φ1|2 + |φ2|2)φ2

φ2t = λφ2 − (|φ1|2 + |φ2|2)φ1.
(13)

This is an integrable autonomous Hamiltonian system obtained in [6].
Second (

σ1 = tψ1x − xψ1t

σ2 = tψ2x − xψ2t + iψ2

)
(14)

is also a symmetry of equation (3). Let

σ1 = σ2 = 0.

We have

ψ1 = φ1(ξ) ψ2 = φ2(ξ)e
−iθ (15)

where ξ = x2 + t2, θ = arctan x
t
, φ1 and φ2 are arbitrary complex-valued functions of ξ . Then

from (3), φ1 and φ2 satisfy the following equation:

2ξ
1
2 φ′

1 = (|φ1|2 + |φ2|2)φ2

2ξ
1
2 φ′

2 + ξ− 1
2 φ2 = −(|φ1|2 + |φ2|2)φ1.

(16)

Let φ1 = p1 + ip2, φ2 = q1 + iq2, then

2ξ
1
2 p′

j = (p2
1 + p2

2 + q2
1 + q2

2 )qj

2(ξ
1
2 qj )

′ = −(p2
1 + p2

2 + q2
1 + q2

2 )pj .
(17)

Introduce new variables

Pj = pj Qj = ξ
1
2 qj .

Then we have

P ′
j = 1

2 (P2
1 + P2

2 + ξ−1Q2
1 + ξ−1Q2

2)ξ
−1Qj

Q′
j = − 1

2 (P2
1 + P2

2 + ξ−1Q2
1 + ξ−1Q2

2)Pj .
(18)

It has the Hamiltonian form

P ′
j = {Pj ,H} Q′

j = −{Qj ,H} (19)
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with the Hamiltonian function

H = 1
8 (P2

1 + P2
2 + ξ−1Q2

1 + ξ−1Q2
2)

2 (20)

and with respect to the usual Poisson bracket {·, ·} on Euclidean space E4. It must be pointed
out that because of the nonautonomy of (19), H is not a first integral for it. In fact, a function
I (x, t) is a first integral for (19) if and only if [8]

∂I

∂t
+ {I,H} = 0

for all x, t .
The Hamiltonian system (19) has two first integrals:

I1 = ξ(P2
1 + P2

2 + ξ−1Q2
1 + ξ−1Q2

2)
2 + 2(P1Q1 + P2Q2) (21)

I2 = P1Q2 − P2Q1. (22)

Moreover, they are in involution; thus we conclude that the Hamiltonian system (19) is
integrable [9].

For the case p2 ≡ q2 ≡ 0, we can give explicit solutions of (17) in terms of an elliptic
function. In fact, let

p1 = p(ξ) q1 = q(ξ) p2 ≡ q2 ≡ 0.

Then

2ξ
1
2 p′ = (p2 + q2)q

2ξ
1
2 q ′ = −(p2 + q2)p − ξ− 1

2 q
(23)

and

I = ξ(p2 + q2)2 + 2ξ
1
2 pq (24)

is a first integral for (23).
Let

p = r cos τ q = r sin τ.

Then we have

r ′ = − 1
2ξ

−1r sin2 τ

τ ′ = − 1
2ξ

− 1
2 r2 − 1

2ξ
−1 sin τ cos τ.

(25)

From (24)

r2 = − sin(2τ) +
√

4I + sin2(2τ)

2ξ
1
2 .

Therefore

τ ′ = − 1
4ξ

−1
√

4I + sin2(2τ)

ln r = −1

2

∫
sin2 τ

ξ
dξ.

(26)

The Gaussian curvatures of the corresponding surfaces are [6]

K = −1

4

!(ln r2)

r4

where ! is the Laplace operator:

! = ∂2

∂x2
+

∂2

∂t2.
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Then from (26), we have

K = − sin(2τ)
√

4I + sin2(2τ)(
− sin(2τ) +

√
4I + sin2(2τ)

)2
.

The corresponding surfaces are the well known Delaunay surfaces.
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